New Bound Estimation of Nonnegative Matrix Spectral Radius

Zhang,Xiaowei

School of Intelligent Science and Engineering, Xi'an Peihua University, Xi'an, Shaanxi, 710125, China

Abstract: In this paper we give an estimate of the upper and lower bounds on the spectral radius of a nonnegative matrix and proved this theorems, it has improved accurary of the spectral radius estimate. In addition, the validity and precision of these estimation are tested.

Keywords: Nonnegative matrix; Spectral radius; Estimation

DOI: 10.62639/sspjinss10.20250201

1. Introduction

Nonnegative matrix theory is widely applied in numerous fields such as numerical analysis, graph theory, linear programming, management science, and automation control. A matrix $\boldsymbol{A} = \left(a_{ij}\right)_{n\times n}$ is termed a nonnegative matrix if $a_{j} \geq 0$. If the eigenvalues of $\boldsymbol{A} \in C^{n\times n}$ are $\lambda_1, \lambda_2, \cdots, \lambda_n$, then $\rho(\boldsymbol{A}) = \max_{1 \leq i \leq n} \left|\lambda_i\right|$ is referred to the spectral radius of \boldsymbol{A} . Currently, there is a well-known conclusion for $\rho(\boldsymbol{A})$ estimating the bound of using the elements of the matrix \boldsymbol{A} :

Conclusion 1(Frobenius): Let $A = \left(a_{ij}\right)_{n \times n} \in R^{n \times n}$ is a nonnegative matrix, and let $\rho(A)$ is spectral radius of A. Let r_i and c_i denote respectively the i row sums and i column sums of i . Then, $\min_{1 \le i \le n} r_i \le \rho(A) \le \max_{1 \le i \le n} r_i$, $\min_{1 \le i \le n} c_i \le \rho(A) \le \max_{1 \le i \le n} c_i$.

Conclusion 2(Wielandt): Let $A = (a_{ij})_{n \times n}$ is n order nonnegative matrix, X is n -dimensional column vector, and X_i is the i component. Then,

$$\min_{1 \le i \le n} \left\{ \frac{(AX)_i}{X_i} \right\} \le \rho(A) \le \max_{1 \le i \le n} \left\{ \frac{(AX)_i}{X_i} \right\}$$

Lemma1: Let A is n order matrix, and let A^{T} is the transpose of A. Let λ is the eigenvalue of A, and let $(x_1, x_2 \cdots, x_n)^T$ and $(y_1, y_2 \cdots, y_n)^T$ is the eigenvectors of A and A^{T} corresponding to λ the eigenvalue . Then, $\lambda \sum_{i=1}^n x_i = \sum_{i=1}^n x_i c_i(A), \ \lambda \sum_{i=1}^n y_i = \sum_{i=1}^n x_i r_i(A), \ \lambda \sum_{i=1}^n x$

Lemma2: Let q_1, q_2, \dots, q_n are positive number, and let p_1, p_2, \dots, p_n are arbitrary real numbers. Then

(Manuscript NO.: JINSS-25-1-Y001)

About the Author

Zhang, Xiaowei (1982-), Male, Han, Origin: Fengxiang, Shaanxi, Job Title: Lecturer, Postgraduate qualifications Research interests: Matrix theory and applications.

$$\min_{i} \left\{ \frac{p_i}{q_i} \right\} \leq \frac{\sum_{i=1}^n p_i}{\sum_{i=1}^n q_i} \leq \max_{i} \left\{ \frac{p_i}{q_i} \right\} \text{ . Equality holds if and only if all the } \frac{p_i}{q_i} \text{ ratios are equal.}$$

Lemma3: Let A is a n order nonnegative matrix. If there are several rows (or columns) of A, denoted by the indices $n_1, n_2 \cdots, n_s$, and we delete A rows (or columns) and the corresponding columns (or rows) to obtain the matrix \overline{A} , then $\rho(A) = \rho(A)$.

The characteristic of Conclusion 1 is that it is computationally simple but not very accurate, while Conclusion 2 improves the accuracy somewhat, yet still falls short of ideal. This paper presents two new bounds for [or "the spectral radius" if is understood in context], enhancing the precision of spectral radius estimation. All matrices mentioned hereinafter are invertible.

2. Main Results

Theorem 1: Let $\rho(A)$ is the spectral radius of the nonnegative matrix A, Let r_i and c_i denote respectively the irow sums and i column sums of A, $B = (A + I)^{n-1}$. Then, for any positive integer k, we have:

$$\min_{i} \left\{ \frac{c_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{c_{i}(\boldsymbol{B}^{k})} \right\} \leq \rho(\boldsymbol{A}) \leq \max_{i} \left\{ \frac{c_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{c_{i}(\boldsymbol{B}^{k})} \right\} \min_{i} \left\{ \frac{r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{B}^{k})} \right\} \leq \rho(\boldsymbol{A}) \leq \max_{i} \left\{ \frac{r_{i}(\quad \ ^{k})}{r_{i}(\boldsymbol{B}^{k})} \right\}.$$

Proof: Let $(x_1, x_2 \cdots, x_n)^T \geq 0$, $(y_1, y_2 \cdots, y_n)^T \geq 0$ is the eigenvectors of \mathbf{A} and \mathbf{A}^T corresponding to the

eigenvalue
$$\rho$$
 , respectively $\sum_{i=1}^n x_i = 1$, $\sum_{i=1}^n y_i = 1$, Since

$$(\mathbf{B}^{k})X = (\mathbf{A} + \mathbf{I})^{k(n-1)}X = (\rho + 1)^{k(n-1)},$$

$$({\pmb B}^{^k}) {\pmb X} = ({\pmb A} + {\pmb I})^{^{k(n-1)}} {\pmb X} = (\rho + 1)^{^{k(n-1)}},$$
 we have ${\pmb A}({\pmb B}^{^k}) {\pmb X} = \left[{\pmb A} ({\pmb A} + {\pmb I})^{^{k(n-1)}} \right] {\pmb X} = \rho (\rho + 1)^{^{k(n-1)}} {\pmb X} \ .$

By Lemma 1
$$\rho(\rho+1)^{k(n-1)}\sum_{i=1}^{n}x_{i}=\sum_{i=1}^{n}x_{i}r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})$$
, and $(\rho+1)^{k(n-1)}\sum_{i=1}^{n}x_{i}=\sum_{i=1}^{n}x_{i}r_{i}(\boldsymbol{B}^{k})$

. Dividing these two inequalities, we obtain $\rho = \frac{\sum\limits_{i=1}^n x_i r_i(\pmb{A}\pmb{B}^k)}{\sum\limits_{i=1}^n x_i r_i(\pmb{B}^k)}$. By Lemma 2, it follows that

$$\min_{i} \left\{ \frac{x_{i}r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{x_{i}r_{i}(\boldsymbol{B}^{k})} \right\} \leq \rho(\boldsymbol{A}) \leq \max_{i} \left\{ \frac{x_{i}r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{x_{i}r_{i}(\boldsymbol{B}^{k})} \right\},$$

i.e.
$$\min_{i} \left\{ \frac{r_i(\pmb{A}\pmb{B}^k)}{r_i(\pmb{B}^k)} \right\} \le \rho(\pmb{A}) \le \max_{i} \left\{ \frac{r_i(\pmb{A}\pmb{B}^k)}{r_i(\pmb{B}^k)} \right\}$$
. Similarly, it can be proven that

$$\min_{i} \left\{ \frac{c_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{c_{i}(\boldsymbol{B}^{k})} \right\} \leq \rho(\boldsymbol{A}) \leq \max_{i} \left\{ \frac{c_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{c_{i}(\boldsymbol{B}^{k})} \right\} \text{ . Specifically, when } k = 0 \text{ , Theorem 1 reduces to Conclusion 1.}$$

Corollary: Let $\rho(A)$ is the spectral radius of the nonnegative matrix A, and let r_i is the i row sum of A (where is the identity matrix). Then $B = (A+I)^{n-1}$, $c = (A^3+A^2+A+I)^{n-1}$ for any positive integer k,

$$\max_{i} \left\{ \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)_i}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \right\} \leq \max_{i} \left\{ \frac{r_i(\boldsymbol{A} \boldsymbol{B}^k)}{r_i(\boldsymbol{B}^k)} \right\}, \quad \min_{i} \left\{ \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)_i}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \right\} \geq \min_{i} \left\{ \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)_i}{r_i(\boldsymbol{B}^k)} \right\}$$

Proof: Let ${\pmb M}={\pmb A}^{k-1}=(m_{ij})\,$. Then, by Theorem 1 and its corollary, we have...

$$\max_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \max_{i} \frac{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{A}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \max_{i} \frac{\sum_{i} m_{ij} r_{j}(\boldsymbol{A}\boldsymbol{B}^{k})}{\sum_{i} m_{ij} r_{j}(\boldsymbol{B}^{k})} \leq \max_{i} \max_{i} \frac{r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{B}^{k})} = \max_{i} \frac{r_{i}(\boldsymbol{A}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{B}^{k})}$$

Similarly, it can be proven $\min_{i} \left\{ \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)_i}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \right\} \ge \min_{i} \left\{ \frac{r_i(\boldsymbol{A} \boldsymbol{B}^k)}{r_i(\boldsymbol{B}^k)} \right\}.$

due to $\mathbf{c} = (\mathbf{A}^3 + \mathbf{A}^2 + \mathbf{A} + \mathbf{I})^{n-1} = (\mathbf{A} + \mathbf{I})^{n-1} (\mathbf{A}^2 + \mathbf{I})^{n-1}, \Leftrightarrow \mathbf{H} = (\mathbf{A}^2 + \mathbf{I})^{n-1} = (h_{ij})_{SO}$

$$\max_{i} \frac{r_{i}(A^{k}C^{k})}{r_{i}(A^{k-1}C^{k})} = \max_{i} \frac{r_{i}(A^{k}(A+I)^{k(n-1)}(A^{2}+I)^{k(n-1)})}{r_{i}(A^{k-1}(A+I)^{k(n-1)}(A^{2}+I)^{k(n-1)})}$$

$$= \max_{i} \frac{r_{i}(\boldsymbol{H}\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{H}\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \max_{i} \frac{\sum_{j} h_{ij} r_{j}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{\sum_{i} h_{ij} r_{j}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} \leq \max_{i} \max_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k-1}\boldsymbol{B}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{B}^{k})}{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})}{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})}{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})}{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})}{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{k})} = \min_{i} \frac{r_{i}(\boldsymbol{A}^{k}\boldsymbol{A}^{$$

Similarly, it can be proven $\min_{i} \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \ge \min_{i} \frac{r_i(\boldsymbol{A} \boldsymbol{B}^k)}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{B}^k)} \ge \min_{i} \frac{r_i(\boldsymbol{A} \boldsymbol{B}^k)}{r_i(\boldsymbol{B}^k)}$.

Combining Theorem 1 and its inference, the following conclusion can be drawn:

$$\min_{i} \frac{r_i(\boldsymbol{A}\boldsymbol{B}^k)}{r_i(\boldsymbol{B}^k)} \leq \min_{i} \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \leq \rho(\boldsymbol{A}) \leq \max_{i} \frac{r_i(\boldsymbol{A}^k \boldsymbol{C}^k)}{r_i(\boldsymbol{A}^{k-1} \boldsymbol{C}^k)} \leq \max_{i} \frac{r_i(\boldsymbol{A}\boldsymbol{B}^k)}{r_i(\boldsymbol{B}^k)}.$$

Lemma 4: Let $_{A}$ is a nonnegative matrix. Then $\gamma_{x} \leq \rho(A) \leq \delta_{x}$, for any given nonnegative

$$\begin{aligned} & \delta_{\boldsymbol{x}} = \max_{\boldsymbol{x}_i > 0} \left\{ \frac{\sum_{j} a_{ij} \boldsymbol{x}_j}{\boldsymbol{x}_i} \right\}, \quad \boldsymbol{\gamma}_{\boldsymbol{x}} = \min_{\boldsymbol{x}_i > 0} \left\{ \frac{\sum_{j} a_{ij} \boldsymbol{x}_j}{\boldsymbol{x}_i} \right\}. \quad \text{when taking} \\ & \boldsymbol{x}^* = (r_1(\boldsymbol{A}), r_2(\boldsymbol{A}), \cdots, r_n(\boldsymbol{A}))^T \text{ and } \boldsymbol{y}^* = (c_1(\boldsymbol{A}), c_2(\boldsymbol{A}), \cdots, c_n(\boldsymbol{A}))^T, \text{ we have } \max \left\{ \boldsymbol{\gamma}_{\boldsymbol{x}^*}, \boldsymbol{\gamma}_{\boldsymbol{y}^*} \right\} \leq \min \left\{ \delta_{\boldsymbol{x}^*}, \delta_{\boldsymbol{y}^*} \right\} \end{aligned}$$

Proof: Since $A\mathbf{x} = \rho(A)\mathbf{x}$, it follows that $\sum_{j=1}^n a_{ij}x_j = \rho(A)x_i$, i.e $\rho(A) = \frac{1}{x_i}\sum_{j=1}^n a_{ij}x_j$. Given $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T > 0$. Let $\mathbf{D} = diag(x_1, x_2, \cdots, x_n)$, then \mathbf{D} is an invertible matrix and $\mathbf{D}^{-1} = diag(x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1})$.

58

Therefore
$$\mathbf{D}^{-1}A\mathbf{D} = \begin{pmatrix} a_{11} & a_{12} \frac{x_2}{x_1} & \cdots & a_{1n} \frac{x_n}{x_1} \\ a_{21} \frac{x_1}{x_2} & a_{22} & \cdots & a_{2n} \frac{x_n}{x_2} \\ \cdots & \cdots & \cdots \\ a_{n1} \frac{x_1}{x_n} & a_{n2} \frac{x_n}{x_1} & \cdots & a_{nn} \end{pmatrix}$$
, because similar matrices have the same spectral

radius. $\rho(\boldsymbol{A}) = \rho(\boldsymbol{D}^{-1}\boldsymbol{A}\boldsymbol{D})$ By Conclusion 1, $\gamma_x \leq \rho(\boldsymbol{A}) \leq \delta_x$. Taking and $\boldsymbol{x}^* = (r_1(\boldsymbol{A}), r_2(\boldsymbol{A}), \cdots, r_n(\boldsymbol{A}))^T$, $\boldsymbol{y}^* = (c_1(\boldsymbol{A}), c_2(\boldsymbol{A}), \cdots, c_n(\boldsymbol{A}))^T$, we have $\gamma_{x^*} \leq \rho(\boldsymbol{A}) \leq \delta_{x^*}$. Since $\rho(\boldsymbol{A}) = \rho(\boldsymbol{A}^T)$, it follows that $\max\left\{\gamma_{x^*}, \gamma_{y^*}\right\} \leq \rho(\boldsymbol{A}) \leq \min\left\{\delta_{x^*}, \delta_{y^*}\right\}.$

Combining this with Conclusion 1, we have the following theorem:

Theorem 2: Let A is a nonnegative matrix. Then, for any given nonnegative vector $\mathbf{x}=(x_1,x_2,\cdots,x_n)^T$,

it holds that
$$\max\left\{\gamma, \gamma^T\right\} \leq \max\left\{\gamma_{x^*}, \gamma_{y^*}\right\} \leq \rho(A) \leq \min\left\{\delta_{x^*}, \delta_{y^*}\right\} \leq \min\left\{R, R^T\right\}$$
.

Here, R and $R^{^T}$ denote the maximum row sum and column sum, respectively, while γ, γ^T denote the minimum row sum and column sum, respectively. Theorem 2 provides a more accurate estimate of $\rho(A)$ compared to Theorem 1, and it is also more operationally feasible, making it a convenient algorithm.

3. Numerical Example

Example: Consider the following 3×3 matrix for estimating the spectral radius of a nonnegative

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 4 & 1 & 1 \end{pmatrix}.$$

It is easy to calculate that $\gamma=4$, $\gamma^T=5$, R=8, $R^T=7$, $\boldsymbol{x}^*=(4,8,6)^T$, $\boldsymbol{y}^*=(7,5,6)^T$. By computing $\rho(A)=5.74165738\cdots$, the estimate based on Conclusion 1 using rows is $4\leq \rho(A)\leq 8$. The estimate based on Conclusion 2 (Wielandt) using rows is $5\leq \rho(A)\leq 6.25$. According to Theorem 1, the estimate using rows when is k=3, $5.5019\leq \rho(A)\leq 6.0538$. According to Theorem 2, we obtain $5.6\leq \rho(A)\leq 5.857143$. Through this example, it is evident that Theorem 2 provides a more accurate estimate of the spectral radius of a nonnegative matrix, and the range is closer to $\rho(A)$. It can be seen that the estimation of the spectral radius of a nonnegative matrix by Theorem 2 is simple, feasible, and desirable, which furthers our understanding of $\rho(A)$.

References

- [1] D. Cao. Bounds on eigenvalues and chromatic number. Linear Algebra Appl., 1998, 270: 1-13.
- [2] R.A. Brualdi and H.J. Ryser. Combinatorial Matrix Theory. Cambridge University Press, New York, 1991, 53-78.
- [3] Roger A. Horn, Charles R. Johnson. Matrix Analysis.

- [4] Yin Jianhong. New bounds for the largest eigenvalue of nonnegative matrices. Numerical Computation and Computer Application, 2002(4): 292-295.
- [5] Tan Xueyuan. Estimates of the spectral radius and separability of nonnegative matrices. Journal of Nanjing Normal University, 2004(1): 24-27.
- [6] Huang Tingzhu, Yang Chuansheng. Special Matrix Analysis and Applications. Beijing: Science and Technology Press, 2007.
- [7] Li Liang, Huang Tingzhu. Estimates of the spectral radius of nonnegative irreducible matrices. Acta Mathematicae Applicatae Sinica, 2008(4): 271-277.
- [8] Cheng Yunpeng (Ed.). Matrix Theory (2nd Edition). Xibei University of Technology, 2003.